Исследование дозовой нагрузки от радона при отоплении сельских домов природным газом на примере села Немююнцы Хангаласского района

Христофорова С.Е., аспирант,
Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН,
ведущий инженер,
Северо-Восточный федеральный университет, г. Якутск
E-mail: sardanaegorova2606@yandex.ru
Наумова К.А., старший преподаватель,
Северо-Восточный федеральный университет, г. Якутск

Научные руководители:
д.ф.-м.н., доцент Степанов В.Е.,
k.ф.-м.н., доцент Тимофеев В.Е.

Известно, что уран распределен в основном в земной коре и сопровождает углеводородные месторождения, а именно каменный уголь, сланцы, нефть и природный газ. В литературе имеются указания на то, что радон выделяется из природного газа, но нет систематических исследований по измерению радона при отоплении природным газом одноэтажных жилых помещений.

Измерения объемных активностей радона проводились в одноэтажных деревянных домах с газовым отоплением в селе Немююнцы, Хангаласского улуса, Республики Саха (Якутия). Эксперимент проводился в жилых домах, использующих котлы типа: КЧМ, АОГВ, КСГ и немецкого Wolf.

В этой статье представлены результаты долговременных измерений объемной активности (ОА) радона в жилых домах с газовым отоплением и расчеты ЭРОА радона для средних значений измерений. Работы велись с помощью немецкого прибора радиометра Alpha Guard PQ2000 [3, стр.326].

ЭРОА радона для неравновесной смеси короткоживущих дочерних продуктов распада в воздухе называется объемная активность радона, находящегося в равновесии
с дочерними продуктами распада, которая имеет такую же величину скрытой энергии, как и данная неравновесная смесь и рассчитывается по следующей формуле [5, стр.15]:

\[\text{ЭРОА}_{\text{Rn}} = \text{OA}_{\text{Rn}} F, \]

где \(\text{OA}_{\text{Rn}} \) – объемная активность радона, \(F \) – коэффициент равновесия между радоном и продуктами его распада, который может принимать значения от 0 до 1. При отсутствии экспериментальных данных о среднем значении этого коэффициента принимают \(F = 0,5 \).

При проектировании новых зданий жилищного назначения должно быть предусмотрено, чтобы ЭРОА дочерних продуктов радона в воздухе помещений не превышала 100 Бк/м³, а в эксплуатируемых жилых зданиях – 200 Бк/м³ [2, стр.6].

Первые измерения объемной активности радона-222 проводились в ноябре 2012-го года в жилых помещениях №1 и №2. Измерение проводилось около газового котла.

2012-2014 гг. измерения проводились на универсальном котле КЧМ-5, а с 2015 года на газовом котле КСГ-12,5 в жилом помещении №1. Данные проведенных измерений показаны в таблице 1.

<table>
<thead>
<tr>
<th>Таблица 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Год</th>
<th>Тип газового котла</th>
<th>(\text{OA}^{222}\text{Rn},) Бк/м³</th>
<th>(\text{ЭРОА}^{222}\text{Rn},) Бк/м³</th>
<th>Температура, ºC</th>
<th>Давление, мбар</th>
<th>Влажность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>КЧМ-5</td>
<td>max:=95±29, min:=17±8</td>
<td>47,5±14,5, 8,5±4</td>
<td>max:=22, min:=20</td>
<td>max:=999,0, min:=998,7</td>
<td>max:=15, min:=12</td>
</tr>
<tr>
<td>2013</td>
<td>КЧМ-5</td>
<td>max:=80±25, min:=29±11</td>
<td>40±12,5, 14,5±5,5</td>
<td>max:=21, min:=20</td>
<td>max:=1000,0, min:=999,8</td>
<td>max:=15, min:=14</td>
</tr>
<tr>
<td>2014</td>
<td>КЧМ-5</td>
<td>max:=75±23, min:=17±8</td>
<td>37,5±11,5, 8,5±4</td>
<td>max:=20,8, min:=19</td>
<td>max:=1001,5, min:=1000,2</td>
<td>max:=16, min:=12</td>
</tr>
<tr>
<td>2015</td>
<td>КСГ-12,5</td>
<td>max:=47±16, min:=13±7</td>
<td>23,5±8, 6,5±3,5</td>
<td>max:=21, min:=20</td>
<td>max:=1002,1, min:=1001,2</td>
<td>max:=15, min:=13</td>
</tr>
<tr>
<td>2016</td>
<td>КСГ-12,5</td>
<td>max:=47±16, min:=7±5</td>
<td>23,5±8, 3,5±2,5</td>
<td>max:=21,5, min:=20,5</td>
<td>max:=1000,1, min:=998,5</td>
<td>max:=17,1, min:=12,4</td>
</tr>
</tbody>
</table>

За время наблюдений при использовании универсального котла КЧМ-5 были получены результаты объемной активности радона почти в два раза выше, чем при газовом котле КСГ-12,5.

В 2012-2016 гг. измерения проводились на универсальном котле АОГВ в жилом помещении №2. Данные проведенных измерений показаны в таблице 2.

<table>
<thead>
<tr>
<th>Таблица 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Год</th>
<th>Тип газового котла</th>
<th>(\text{OA}^{222}\text{Rn},) Бк/м³</th>
<th>(\text{ЭРОА}^{222}\text{Rn},) Бк/м³</th>
<th>Температура, ºC</th>
<th>Давление, мбар</th>
<th>Влажность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>АОГВ</td>
<td>max:=150±46, min:=66±21</td>
<td>75±23, 33±10,5</td>
<td>max:=21, min:=20</td>
<td>max:=999,1, min:=998</td>
<td>max:=15, min:=14</td>
</tr>
<tr>
<td>2013</td>
<td>АОГВ</td>
<td>max:=66±21, min:=25±10</td>
<td>33±10,5, 12,5±5</td>
<td>max:=22, min:=20</td>
<td>max:=1000,1, min:=999,5</td>
<td>max:=16, min:=14,5</td>
</tr>
<tr>
<td>2014</td>
<td>АОГВ</td>
<td>max:=229±53</td>
<td>114,5±26,5</td>
<td>max:=21, min:=20</td>
<td>max:=1001,1</td>
<td>max:=16</td>
</tr>
<tr>
<td>Год</td>
<td>Тип газового котла</td>
<td>ОА ²²²Рn, Бк/м³</td>
<td>ЭРОА ²²²Рn, Бк/м³</td>
<td>Температура, °C</td>
<td>Давление, мбар</td>
<td>Влажность, %</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2012</td>
<td>Wolf</td>
<td>max:=126±36</td>
<td>max:=21</td>
<td>max:=1010,0</td>
<td>max:=16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>min:=66±21</td>
<td>min:=20,8</td>
<td>min:=1009,2</td>
<td>min:=15</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Wolf</td>
<td>max:=56±20</td>
<td>max:=20,9</td>
<td>max:=999,3</td>
<td>max:=15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>min:=29±11</td>
<td>min:=20,5</td>
<td>min:=998,2</td>
<td>min:=14,5</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>Wolf</td>
<td>max:=79±24</td>
<td>max:=21</td>
<td>max:=1002,3</td>
<td>max:=15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>min:=33±13</td>
<td>min:=20,6</td>
<td>min:=999,3</td>
<td>min:=14,2</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Wolf</td>
<td>max:=85±26</td>
<td>max:=20,9</td>
<td>max:=1000,6</td>
<td>max:=16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>min:=29±11</td>
<td>min:=20,3</td>
<td>min:=999,3</td>
<td>min:=15,3</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Wolf</td>
<td>max:=95±29</td>
<td>max:=21</td>
<td>max:=1002,3</td>
<td>max:=12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>min:=22±9</td>
<td>min:=30,1</td>
<td>min:=1001,5</td>
<td>min:=10</td>
<td></td>
</tr>
</tbody>
</table>

Из наблюдений видно, что ЭРОА радона находится на уровне предельно допустимой концентрации радона для новых зданий, и ниже ПДК для эксплуатируемых зданий. Причиной кратковременных значений по объемной активности высоких содержаний радона в домах, обусловленных использованием природного газа, могут быть следующие факторы:

1. Тип газовых котлов, низкий КПД котла приводит к увеличению объемов потребляемого газа, что связано с соответствующим увеличением содержания радона в помещении.
2. Теплоизоляция дома, большие утечки тепла приводят к увеличению объемов потребляемого газа.

С 2012 года измерения проводились в жилом помещении №3 с немецким газовым котлом Wolf. Данные проведенных измерений показаны в таблице 3.

Таблица 3

По результатам наблюдений видно, что ЭРОА радона не превышает предельную допустимую концентрацию.

В 2015 году также были дополнительно измерены на объемную активность радона 5 жилых помещений с газовым отоплением. Данные проведенных измерений показаны в таблице 4.
Результаты измерений ОА радона

<table>
<thead>
<tr>
<th>Тип газового котла</th>
<th>ОА 222Рn, Бк/м3</th>
<th>ЭРОА 222Рn, Бк/м3</th>
<th>Температура, °C</th>
<th>Давление, мбар</th>
<th>Влажность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>КЧМ-5</td>
<td>max:=98±30 min:=18±8</td>
<td>49±15</td>
<td>max:=26 min:=23</td>
<td>max:=1008,4</td>
<td>max:=18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9±4</td>
<td>min:=18</td>
<td>min:=1008,1</td>
<td>min:=7,4</td>
</tr>
<tr>
<td>АОГВ</td>
<td>max:=85±26 min:=18±8</td>
<td>42,5±13</td>
<td>max:=23,6 min:=14,6</td>
<td>max:=1013,1</td>
<td>max:=6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9±4</td>
<td>min:=1012,9</td>
<td>min:=1008,4</td>
<td>min:=1,7</td>
</tr>
<tr>
<td>КСГ-12,5</td>
<td>max:=88±26 min:=22±9</td>
<td>44±13</td>
<td>max:=19,3 min:=8,2</td>
<td>max:=1006,4</td>
<td>max:=10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11±4,5</td>
<td>min:=1004,4</td>
<td>min:=1008,4</td>
<td>min:=8</td>
</tr>
<tr>
<td>КСГ-12,5</td>
<td>max:=24±9 min:=5±4</td>
<td>12±4,5</td>
<td>max:=23 min:=21</td>
<td>max:=1010,2</td>
<td>max:=20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5±2</td>
<td>min:=1001,3</td>
<td>min:=1008,4</td>
<td>min:=16</td>
</tr>
<tr>
<td></td>
<td>max:=35±13 min:=25±10</td>
<td>17,5±6,5</td>
<td>max:=24 min:=21</td>
<td>max:=1010,5</td>
<td>max:=23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12,5±5</td>
<td>min:=1008,3</td>
<td>min:=1008,4</td>
<td>min:=15</td>
</tr>
</tbody>
</table>

За 5 лет наблюдений видно, что объемная активность радона универсального котла в жилых помещениях с газовыми отоплениями выше, чем самым отрицательно влияет на здоровье человека.

Значение индивидуальной годовой эффективной дозы внутреннего облучения взрослых жителей населенного пункта (района и т.п.) за счет короткоживущих дочерних продуктов изотопов радона в воздухе рассчитывается по данным измерений ЭРОА изотопов радона в воздухе помещений и атмосферном воздухе на территории населенного пункта (района и т.п.) по формуле [3, стр.11]:

$$E_{ан.Рн}=9,5\cdot10^{-6}\cdot8760\cdot(0,2\cdot\text{ЭРОА}_{ул}+0,8\cdot\text{ЭРОА}_{возд}),\text{ мЗв/год},$$

где 9,5·10$^{-6}$ – дозовый коэффициент (в единицах (мЗв·м3)/(час·Бк)); 8760 – количество часов в году; 0,2 и 0,8 – доля времени нахождения людей в помещениях и на улице соответственно; если для атмосферного воздуха на территории данного населенного пункта (района и т.п.) данные о значениях ЭРОА$_{ул}$ отсутствуют, то для расчетов доз облучения населения за счет этого фактора следует принимать ЭРОА$_{ул}$ = 6,5 Бк/м3 в соответствии с данными о среднемировых значениях ЭРОА изотопов радона в приземном слое атмосферного воздуха.

В радиационной гигиене принято рассчитывать дозы по максимально возможным вариантам в реальных жизненных условиях. Поэтому из таблиц расчеты делаем для максимальных объемных концентраций радона.

Для каждого вида котла по формуле (2) были рассчитаны дозовые нагрузки. Результаты вычислений приведены в таблице 5.
Дозовые нагрузки от радона от разных типов котлов

<table>
<thead>
<tr>
<th>Типы газовых котлов</th>
<th>ОА ^{222}Rn, Бк/м3 (макс. знач.)</th>
<th>ЭРОА ^{222}Rn, Бк/м3</th>
<th>$\text{E}_{\text{Вн}, \text{Rn}}$, мЗв/год</th>
<th>Отношение $\text{E}_{\text{Вн}}$ к ДГЭД</th>
</tr>
</thead>
<tbody>
<tr>
<td>КЧМ-5</td>
<td>98±30</td>
<td>49±15</td>
<td>3,37</td>
<td>0,337</td>
</tr>
<tr>
<td>КСГ-12,5</td>
<td>47±16</td>
<td>23,5±8</td>
<td>1,67</td>
<td>0,167</td>
</tr>
<tr>
<td>АОГВ</td>
<td>229±53</td>
<td>114,5±26,5</td>
<td>7,73</td>
<td>0,773</td>
</tr>
<tr>
<td>Wolf</td>
<td>126±36</td>
<td>63±18</td>
<td>4,3</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Наибольший результат был получен в жилом помещении с российским универсальным газовым котлом АОГВ: 7,73 мЗв/год. А наименьший в помещении с газовым котлом КСГ-12,5: 1,67 мЗв/год. Во всех исследованных домах и в среднем дозовая нагрузка на людей меньше допустимой годовой эффективной дозы (ДГЭД) равной 10 мЗв/год [1, стр.29].

Установлено, что потребление природного газа для отопления жилых помещений в отдельных случаях, обусловленных типом котлов и характеристиками теплоизоляции домов, может привести к превышению ПДК для строящихся домов (100 Бк/м3).

При условии достаточной теплоизоляции стен и использования экономных газовых котлов уровень активности радона можно снизить в несколько раз по сравнению с ПДК.

Необходимы системные комплексные исследования дозовых нагрузок на население от радона при газификации сельских районов в Якутии для различных типов газовых отопительных котлов и теплоизоляционных показателей зданий.

Рекомендуется для отопления жилых домов природным газом строить отдельные котельные для отопительных котлов. Рекомендуется газовые плиты для приготовления пищи размещать в отдельной вентилируемой комнате для кухни.

Список литературы:
5. Яковлева В.С. Методы измерения плотности потока радона и торона с поверхности пористых материалов: монография / В.С. Яковлева; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011. – 174 с.

Расчет усиления железобетонного моста композитными материалами совместно с полимерной пропиткой

Хрюкин А.А., магистрант,
Северо-Восточный федеральный университет,
г. Якутск
E-mail: hr-art@mail.ru

Научный руководитель:
старший преподаватель Смолина М.В.

Введение. Мосты являются важнейшими элементами транспортной инфраструктуры страны, и повышение их надежности стоит одной из основных задач эксплуатации дорожной сети.

Мосты подвержены различным воздействиям: выщелачиванию бетона, образованию трещин и сколов бетона, коррозии металла, деформации и разрушению элементов от проходящего транспорта, которые постепенно снижают прочность и эксплуатационную надежность мостов. Происходит физический износ, ограничивающий срок их службы. Кроме физического износа, происходит моральное отставание мостов от возрастающих требований транспорта в связи с увеличением нормативных расчетных нагрузок и скоростей движения. [1]

На сегодняшний день многие пролетные строения железобетонных мостов, ввиду длительных сроков и суровых условий эксплуатации, имеют дефекты и повреждения, прямо или косвенно влияющие на их грузоподъемность. [2] В виду этого возникает острая необходимость в усилении мостов.

В практике усиления железобетонных мостов известен ряд традиционных методов, таких как усиление шпренгельными тяжами, увеличение поперечного сечения и др. Однако в настоящее время широко используется технология усиления с применением не подверженных коррозии композитных материалов на основе углеродных волокон. Их использование при усилении позволяет увеличить несущую способность главных балок пролетного строения. [3] Но грузоподъемность моста зависит не только от несущей способности главных балок пролетного строения, но и от прочности плиты проезжей части. Плита проезжей части представляет собой конструкцию из главных балок, объединённых между собой швами омоноличивания. Данные швы являются наиболее слабым звеном в пролетном строении. Вода, проникающая сквозь нарушенную гидроизоляцию подвергает выщелачиванию и деградации бетона швов, тем самым уменьшая их прочность.

Вследствие этого актуальным вопросом является проектирование комплексного усиления железобетонных мостов, включающего в себя увеличение несущей способности главных балок пролетного строения и восстановление прочности бетона швов омоноличивания плиты проезжей части.