Abstract

Objective: To develop the method of preventive diagnosis of venous thrombosis using the ultrasound duplex scanning (USDS).

Materials and methods: 306 persons were examined, 146 were patients with acute venous thrombosis, 108 patients – with varicose veins and 52 healthy persons (control group). All participants were examined using USDS and D-dimer level was evaluated.

Results: As the result of the conducted research an ultrasound phenomenon of echogenic particles in valvular sinus area (further referred to as spontaneous echo contrast) is described. A classification of this phenomenon is developed; two degrees of spontaneous echo contrast are documented. Spontaneous echo contrast of the 1st degree reflects the fact that the valvular sinus area is the most thrombogenic zone.

Spontaneous echo contrast of the 2nd degree is characterized as pathological, it is a prethrombotic state and can serve as one of the most early predictors of developing venous thrombosis. A high correlation between phenomenon of spontaneous echo contrast of the 2nd degree, venous thrombosis and D-dimer level indicators is determined ($r = 0.89, P < .01$).

Conclusions: An ultrasound study of valvular sinus is a simple, available and reproducible method of screening and can be applied as a preventive diagnostics of acute venous thrombosis. The results of the investigations permit us to form risk groups of deep vein thrombosis and perform timely prevention of this pathology.

Keywords: thrombosis of deep veins, preventive ultrasound diagnostics, ultrasound duplex scanning, venous valve, effect of spontaneous echo contrast.

Introduction

Deep vein thrombosis (DVT) of lower extremities and pulmonary embolism (PE) are major health care problems [1, 2]. DVT and PE are approximately 160 and 60 cases per 100 000 accordingly every year [3, 4].

For indication of these diseases a term of venous thromboembolism (VTE) is used. There is a tendency of growing frequency of VTE. In the US, an estimated 600,000 cases of venous thromboembolism occur annually [5, 6].

Prevention of VTE is one of the main issues of contemporary medicine taking into account the difficulty of diagnostics, severe complications of this pathology and considerable economic losses [7]. According to the above-mentioned information, a screening method of early diagnostics of deep vein thrombosis, that should satisfy two criteria - objectivity and availability, is of current importance.

One of the most informative methods of diagnostics of venous thrombosis is ultrasound duplex scanning (USDS). The accuracy of veins femoropopliteal segment is more than 90%, calf veins - from 50 to 90 % [8].

The aim of the study is a development of preventive diagnostics of venous thrombosis with USDS.
Materials and methods

The study was comparative. There were three groups of patients: the 1st (main) group comprised 146 patients (88 males, 58 females, median age 41.2, range 29 – 54) with acute thrombosis of veins of lower extremities (77 patients with varicose vein thrombosis and 69 – with thrombosis of deep veins); the 2nd (comparison) – 108 patients (47 males, 61 females, median age 39.8, range 27 – 55) with varicose veins with different manifestation of chronic venous insufficiency (CVI) and the 3d (control) – 52 healthy persons (34 males, 18 females, median age 43.8, range 23 – 56). Verification of diagnoses like varicose vein thrombosis, thrombosis of deep veins and varicose veins were based on USDS. The criterion for inclusion to the control group was the absence of ultrasound venous pathology.

All patients were examined with USDS. The study was carried out on HDI-5000 (Phillips Medical Systems) and VIVID-7 (General Electric Medical Systems, USA) devices. A linear transducer with broadband frequencies in the 5-10 MHz range is usually employed. In DVT an intact segment of femoral vein of the affected extremity was examined, and in the case of its thrombosis - femoral segment of contralateral extremity was located. In examination of patients with varicose veins we studied the extremity with the most manifestation of the disease. In case of superficial veins thrombosis, the deep veins of affected extremity were studied. The state of structures of the first and the second valves of femoral vein were assessed as the most available and reproducible for ultrasound scanning. The evaluations were carried out in standing and lying positions and with using functional tests (Valsalva’s test, tests with proximal and distal manual compression). In order to avoid the provocation of PE, these tests were conducted in patients with occlusive thrombosis of deep veins of calf. The tests were short and low-intensity. Functions of venous valves were assessed placing transducer of the scanner under the visual control immediately above valve leaflets area. D-dimer level was assessed with coagulometer Sysmex CA-1500 with immunoturbidimetric method (Innovance D-dimer test, Siemens, Germany).

Statistics

Statistical analyses were performed using Statistica 10 (StatSoft, Tulsa, OK, USA). The clinical characteristics of patients are presented by methods of descriptive statistics. A Shapiro-Wilk test was performed to assess normal distribution of the data. Data were expressed as mean ± SD values. Continuous variables were analyzed with the independent Student’s t test or Mann-Whitney U test for nonparametric variables when appropriate. Interrelations of parameters were checked using Spearman’s rank correlation coefficient. Comparisons of categorical variables were performed with the χ2 test. A value of P < .05 was accepted as representing a significant difference.

Results

Valve leaflets of femoral vein were visualized in the lying position as thin echogenic strips making oscillations of different amplitude. They move away from vein wall by inspiration and press to the vein by expiration. Probably that is the way the blood evacuation from valve sinuses is performed. The area of valve sinus in supine position in the normal condition does not contain echogenic particles.

In all patients of control group (n= 52), in resting state in the upright position the valves of superficial and deep veins are constantly open, their leaflets are at the angle of 30–40 degrees to the wall of the vein. Valve leaflets perform oscillations in the vein lumen with a high frequency and a small amplitude of 5–15°. At Valsalva’s test valve leaflets close up in the vein center. In the niches of valve sinuses multiple non-homogeneous echogenic particles are detected. It is caused by accumulation of blood cells and its turbulence (effect of spontaneous echo contrast) (Figure1).

We also observed a similar event in lying position. We differed two degrees of spontaneous echo contrast. The 1st degree is characterized by echogenic formation occupying no more than 1/3 of valve sinus and completely disappearing while performing functional tests (Figure 2). At the 2nd degree echogenic formation occupying more than ½ of valve sinus
is visualized. It reduces its intensity during functional tests. Valve leaflet is thickened to 0.81±0.12 mm (Figure 3 a, b; Table 1).

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1st degree (n = 107)</th>
<th>2nd degree (n = 127)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness, mm</td>
<td>0.52 ± 0.14</td>
<td>0.81 ± 0.12</td>
<td><.05</td>
</tr>
<tr>
<td>(M ± SD)</td>
<td>0.39–0.65</td>
<td>0.63–0.92</td>
<td></td>
</tr>
<tr>
<td>Length, cm</td>
<td>1.12 ± 0.18</td>
<td>1.16 ± 0.2</td>
<td>>.05</td>
</tr>
<tr>
<td>(M ± SD)</td>
<td>0.85–1.32</td>
<td>0.83–1.42</td>
<td></td>
</tr>
</tbody>
</table>

Thrombosis of venous sinus with leaflet fixation was determined in seven patients (Figure 4 a, b). Degree and frequency of spontaneous echo contrast are presented in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Subgroups of patients</th>
<th>1st group (n = 146)</th>
<th>2nd group (n = 108)</th>
<th>3d group (n = 52)</th>
<th>P in comparison of 1st and 2nd group</th>
<th>P in comparison of 1st and 3d group</th>
<th>P in comparison of 2nd and 3d group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st degree of spontaneous</td>
<td>21 (14.4%)</td>
<td>78 (72.2%)</td>
<td>8 (15.4%)</td>
<td><.00001</td>
<td>.86</td>
<td><.00001</td>
</tr>
<tr>
<td>echo contrast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd degree of spontaneous</td>
<td>106 (72.6%)</td>
<td>19 (17.6%)</td>
<td>2 (3.8%)</td>
<td><.00001</td>
<td><.00001</td>
<td>.016</td>
</tr>
<tr>
<td>echo contrast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombosis of venous sinus</td>
<td>6 (4.1%)</td>
<td>1 (0.9%)</td>
<td>–</td>
<td>.125</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Spontaneous echo contrast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and thrombosis of venous</td>
<td>13 (8.9%)</td>
<td>10 (9.3%)</td>
<td>42 (80.8%)</td>
<td>.922</td>
<td><.00001</td>
<td><.00001</td>
</tr>
<tr>
<td>sinus are not determined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D-dimer values in patients of different groups and depending on degree of spontaneous echo contrast are presented in Table 3 and Table 4.

Table 3

<table>
<thead>
<tr>
<th>D-dimer level</th>
<th>1st group (n = 146)</th>
<th>2nd group (n = 108)</th>
<th>3d group (n = 52)</th>
<th>P in comparison of 1st and 2nd group</th>
<th>P in comparison of 1st and 3d group</th>
<th>P in comparison of 2nd and 3d group</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500 ng FEU/ml</td>
<td>2 (1.4%)</td>
<td>97 (89.8%)</td>
<td>51 (98.0%)</td>
<td><.00001</td>
<td><.00001</td>
<td>.063</td>
</tr>
<tr>
<td>500 ng FEU/ml</td>
<td>6 (4.1%)</td>
<td>8 (7.4%)</td>
<td>1 (2.0%)</td>
<td>.255</td>
<td>.464</td>
<td>.159</td>
</tr>
<tr>
<td>> 500 ng FEU/ml</td>
<td>138 (94.5%)</td>
<td>3 (2.8%)</td>
<td>–</td>
<td><.00001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Quantitative characteristics (M ± SD)</td>
<td>2760 ± 120</td>
<td>300 ± 200</td>
<td>260 ± 90</td>
<td><.001</td>
<td><.001</td>
<td>>.05</td>
</tr>
<tr>
<td>Range</td>
<td>420–4300</td>
<td>200–700</td>
<td>210–500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4

<table>
<thead>
<tr>
<th>D-dimer level</th>
<th>1st degree of spontaneous echo contrast (n = 107)</th>
<th>2nd degree of spontaneous echo contrast (n = 127)</th>
<th>Thrombosis of venous sinus (n = 7)</th>
<th>P in comparison of 1st and 2nd degree</th>
<th>P in comparison of 1st degree and thrombosis of venous sinus</th>
<th>P in comparison of 2nd degree and thrombosis of venous sinus</th>
</tr>
</thead>
<tbody>
<tr>
<td><500 ng FEU/ml</td>
<td>76 (71.0%)</td>
<td>5 (3.9%)</td>
<td>–</td>
<td><.00001</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>500ng FEU/ml</td>
<td>29 (27.1%)</td>
<td>11 (8.7%)</td>
<td>–</td>
<td>.0002</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>>500 ng FEU/ml</td>
<td>2 (1.9%)</td>
<td>111 (87.4%)</td>
<td>7 (100.0%)</td>
<td><.00001</td>
<td><.00001</td>
<td>.317</td>
</tr>
<tr>
<td>Quantitative characteristics (M ± SD)</td>
<td>480 ± 30</td>
<td>1690 ± 390</td>
<td>2500 ± 860</td>
<td><.001</td>
<td><.001</td>
<td><.05</td>
</tr>
<tr>
<td>Range</td>
<td>400–520</td>
<td>930–2800</td>
<td>1510–4000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A direct interrelation between the degree of 2d spontaneous echo contrast and D-dimer level was determined during correlation analysis in the 1st group (r = 0.89, P<.01).

Discussion

It is well known that the risk of venous thromboembolism increases with age, obesity, new malignant growths, previous thrombosis of deep veins and PE, antiphospholipid syndrome, pregnancy, repeated interventions and thrombophilia states [9].

Various clinical presentations of deep vein thrombosis should be verified with objective diagnostics methods. Nowadays they are USDS and laboratory tests. D-dimer study is paid much attention in laboratory diagnostics of deep vein thrombosis. It is a specific marker of intravascular fibrin accumulation and one of terminal products of plasmin degradation of stabilized fibrin [10]. Excess of D-dimer concentration in blood for more than 500 ng FEU/ml is one of the most reliable markers of deep vein thrombosis, its sensibility varies from 87% to 96%. One of the main disadvantage of the method is its low specificity from 39% to 64%, that limits its application in the practice as isolated way without instrumental methods of diagnostics [11–13].

Recently, an important role of thrombophilia states such as inherited or acquired changes in hemorheology and hemostasis has been noted in development of deep veins thrombosis. They create a high risk of thrombosis development and recurrence [14]. Occurrence of different kinds of hematogenic thrombophilia in patients with thrombosis of deep veins amounts to 60–70% [15, 16]. General frequency of thrombophilia is from 8% to 11% of the population [17].

Thrombosis are more often primarily located in the venous valve sinuses and spread along the vein [18–20]. The area of valve sinus is in hemodynamic unfavorable conditions. According to research of S. Sevitt [21] and M.R. Boisseau [22], turbulent blood flow in the sinus area promotes stasis of blood cells (mostly erythrocytes). In case of imbalance between coagulative and fibrinolytic systems a thrombus develops in the niche of valve sinus and it spreads along the vein (Figure 5) [19]. Obviously, this balance may depend on coagulative blood activity and presence of any kind of thrombophilia.

In our view, the 1st degree of spontaneous echo contrast phenomenon in the area of valve sinuses indicates enhanced thrombogenicity. There is a significant increase of frequency of this phenomenon (up to 72.2%) in patients with varicose veins compared to control group of healthy persons (P<.00001). A fact of valve damage of varicose veins, affected by hypoxia, infiltration of vein wall and valve leaflets by macrophages and monocytes with endothelium disfunction and induction of its coagulative activity is widely known. [23–25]. It is possible
that the fact of spontaneous echo contrast phenomenon of the 1st degree is an ultrasound reflection of similar processes in the area of deep veins valves.

The 2nd degree of spontaneous echo contrast is characterized as a pathology. We believe that the phenomenon is a prethrombosis state that is proved by the following facts. Firstly, it is known that an inflammatory process with involved vein wall and valve leaflet is one of the sign of venous thrombosis. A significant thickness of valve leaflet in the 2d degree of spontaneous contrast in comparison to the 1st (P<.05) is an indirect confirmation of inflammatory progressing in sinus valve area (Table 1) Secondly, it is a prominent increase of the 2d degree spontaneous contrast frequency (P<.00001) in patients of the 1st group with verified venous thrombosis in comparison to the 2d and 3d groups (Table 2). Besides, this fact confirms a significant increase of D-dimer level (P<.001) that is the most sensitive laboratory indication of venous thrombosis when comparing the 2d degree to the 1st degree (Table 4). The data of table 4 also show that we didn’t observe a significant difference of abnormal D-dimer value (p=.317) in the 2d degree of spontaneous echo contrast and thrombosis of valve sinus as an initial stage of thrombus. It proves a high informative level of spontaneous echo contrast test. A high correlation (r=0.89; P <.01) between the 2d degree and D-dimer value in the 1st group also confirms that this phenomenon is a prethrombosis state.

We visualized the disappearance of spontaneous contrast on contralateral extremity in patients with DVT on the 3-4 day of disease on the background of anticoagulant therapy. This phenomenon can be used as monitoring of efficiency of treatment.

Conclusions

Thus, ultrasound examination of valve sinuses is a simple, available and reproducible method of screening, and probably may be used for preventive diagnostics of acute venous thromboses. For this reason, it is possible to form risk groups of deep veins thrombosis and perform timely prevention of this pathology. Undoubtedly, further investigations in this area are necessary. To assess clinical significance of spontaneous echo contrast a monitoring of a risk group is required. In our opinion, the comparison of ultrasound research and blood test in thrombophilia is the most promising.

Biomarkers of endothelial disfunction in children with atypical hemolytic uremic syndrome

Moscow Regional Research Clinical Institute named after M.F. Vladimirskij
(Russia, Moscow)

doi 10.18411/scc-09-2018-08
idsp 000001:scc-09-2018-08

Introduction

Hemolytic uremic syndrome (HUS) is a heterogeneous group of hemolytic disorders characterized by acute renal failure, microangiopathic hemolytic anemia and thrombocytopenia. There are 2 main forms of this disorder: typical HUS (tHUS), caused by Shiga-toxin producing Escherichia coli and atypical HUS (aHUS), associated with uncontrolled complement activation through the alternative pathway [3,4]. Eculizumab, a humanized anti-C5 monoclonal antibody, has recently been introduced as a novel therapy against aHUS, which significally improved prognosis of this disorder [2]. However, optimal duration of eculizumab therapy and whether it can be dicontinuated in remission still remains unclear [1,5]. We proposed that endothelial activaton followed by disfunction might indicate subclinical complement activation in remission of aHUS and assessed the levels of cell adhesion molecules (biomarkers of endothelial activaton) and C3 complement component in these patients.

Patients and methods. 58 children with aHUS remission were examined. 22 children were treated with eculizumab (group1), 16 children did not receive this drug (group 2). The duration of remission was 22±20 months and 22±21 months respectively. Serum concentrations of C3 complement component, soluble intracellular adhesion molecule-1 (sICAM-1) and vascular cell adhesion molecule (sVCAM-1) were measured by enzyme-linked immnosorbent assay. Leucocyte and thrombocyte counts, hemoglobin, creatinine, urea, LDG levels were determined as well.